Решение типового варианта по математике

 Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Купить кальян выбирайте кальян.
Примеры решения задач Контрольная по математике Практикум по решению математических задач В нашей компании купить академическую справку стоит дешевле, чем у конкурентов.
Доказать сходимость ряда 
сходимость знакочередующийся ряд
Основные свойства преобразования Лапласа
Вычислить интеграл
Теория вероятностей и математическая статистика
Формула полной вероятности
Локальная и интегральная теоремы Лапласа
Вычисление пределов
Раскрытие неопределенностей
Дифференцирование функций
Правило Лопиталя вычисления пределов
Найти частные производные первого порядка
Производная по направлению и градиент
Исследование функций
Направления выпуклости графика функции одного переменного
Провести полное исследование и построить график функции
Экстремумы функции двух переменных.
Интегралы и их приложения
Внесение под знак дифференциала и замена переменной.
Интегрирование выражений, содержащих квадратный трехчлен
Приложения определенного интеграла

Локальная и интегральная теоремы Лапласа

Пример 8. Предприятие выполняет в срок 70% заказов. Какова вероятность того, что из 200 заказов будут выполнены в срок :

А) ровно 140 заказов;

Б) от 130 до 150 заказов .

Решение. Будем считать, что вероятность выполнения одного заказа p=0,7 не зависит от наличия на предприятии других заказов. Тогда имеем серию n=200 повторных независимых испытаний с вероятностью выполнения одного заказа p=0,7 и не выполнения заказа q=1p =0,3.

А) Так как число испытаний велико n=200, и в срок необходимо выпол­нить ровно k =140 заказов, то применяем локальную теорему Лапласа. Находим z по формуле:

Из таблицы значений функции Гаусса находим .

По формуле находим вероятность того, что из 200 заказов выполнятся в срок ровно 140 :

Б) Для расчёта вероятности того, что из 200 заказов будут выполнены в срок : от k1= 130 до k2= 150 заказов, применяем интегральную теорему Лапласа: .

Рассчитаем значения z1, z2 по формулам:

Используя таблицу и нечётность функции Лапласа, получим:

Ф (1.45) = 0,8764; Ф (-1,54) = - 0,8764.

Тогда вероятность того, что из 200 заказов будут выполнены в срок от 130 до 150 заказов :

Ответ :

Случайные величины

Пример 9. Определить математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х, если распределение за­дано таблицей Таблица 3

xi

0

1

2

3

4

5

6

p(xi)

0,2

0,25

0,3

0,15

0,06

0,03

0,01

 

Решение.  значит, имеем закон распределения дискретной случайной величины.

Найдем математическое ожидание М(Х) по формуле:

Найдем дисперсию D(X) по формуле: D(X)=M(X2)-(M(X))2

Среднее квадратическое отклонение .

На главную страницу: Решение курсовой