Решение типового варианта по математике

 Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Доказать сходимость ряда 
сходимость знакочередующийся ряд
Основные свойства преобразования Лапласа
Вычислить интеграл
Теория вероятностей и математическая статистика
Формула полной вероятности
Локальная и интегральная теоремы Лапласа
Вычисление пределов
Раскрытие неопределенностей
Дифференцирование функций
Правило Лопиталя вычисления пределов
Найти частные производные первого порядка
Производная по направлению и градиент
Исследование функций
Направления выпуклости графика функции одного переменного
Провести полное исследование и построить график функции
Экстремумы функции двух переменных.
Интегралы и их приложения
Внесение под знак дифференциала и замена переменной.
Интегрирование выражений, содержащих квадратный трехчлен
Приложения определенного интеграла

Интегралы и их приложения

Основные определения и формулы. Функция F(x) является первообразной функции f(x), если на некотором множестве X выполняется равенство F¢(x)=f(x). Совокупность всех первообразных для f(x) называется неопределенным интегралом и обозначается . При этом, если F(x) – какая-либо из первообразных f(x), то , константа C пробегает все множество действительных чисел. В таблице 2 на стр. 26 приводятся основные формулы, в которых u=u(x).

Таблица 2

1) 

2)

3) 

4) 

5) 

6) 

7) 

8) ,

9) 

10) 

11)

12)

13)

14)

15)

16)

Очевидно, что формулы 10), 12) и 14) являются частными случаями формул 11), 13) и 15) соответственно.

Если f(x) – функция, непрерывная на отрезке [a;b], то существует определенный интеграл от этой функции, который можно вычислить по формуле Ньютона-Лейбница:

  , (5.1)

где F(x) – какая-либо первообразная для f(x). В отличие от неопределенного интеграла (представляющего собой множество функций) определенный интеграл – некоторое число.

И неопределенный, и определенный интегралы обладают свойством линейности (интеграл от суммы функций равен сумме интегралов, а постоянный множитель можно выносить за знак интеграла):

,

.

Пример 5.1. Найти: а) ; б) .

Решение. В задании а) подынтегральную функцию сначала упрощаем, разделив почленно каждое слагаемое из числителя на знаменатель, затем используем свойство линейности и «табличные» формулы 1)-3):

В задании б), помимо линейности и «табличных» формул 3), 9), 1), используем формулу Ньютона-Лейбница (5.1):

На главную страницу: Решение курсовой