Решение типового варианта по математике

 Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

http://prav-status.ru/ добровольная ликвидация ооо.
Доказать сходимость ряда 
сходимость знакочередующийся ряд
Основные свойства преобразования Лапласа
Вычислить интеграл
Теория вероятностей и математическая статистика
Формула полной вероятности
Локальная и интегральная теоремы Лапласа
Вычисление пределов
Раскрытие неопределенностей
Дифференцирование функций
Правило Лопиталя вычисления пределов
Найти частные производные первого порядка
Производная по направлению и градиент
Исследование функций
Направления выпуклости графика функции одного переменного
Провести полное исследование и построить график функции
Экстремумы функции двух переменных.
Интегралы и их приложения
Внесение под знак дифференциала и замена переменной.
Интегрирование выражений, содержащих квадратный трехчлен
Приложения определенного интеграла

Пример 1.4.7. Провести полное исследование и построить график функции

.

Решение. Придерживаемся предложенной схемы исследования.

1. Функция определена при всех вещественных x, кроме x = -2.

2. Область определения не симметрична относительно начала координат, поэтому свойством четности или нечетности функция не обладает (заметим, что в случае симметричности области определения необходимо проверить выполнение одного из равенств: f(-x)=f(x) или f(-x)=-f(x)). Исходная функция не является и периодической.

3. Решая уравнение f(x)=0, находим, что график функции пересекает оси координат в точке (0,0).

4. В силу свойств непрерывных функций функция  непрерывна там, где определена, т.е. при всех вещественных x, кроме x = -2. Поскольку

,

то x = -2 – точка разрыва второго рода, а прямая x = -2 является вертикальной асимптотой графика. Кроме того, заметим, что , .

5. Необходимые расчеты, связанные с исследованием первой производной, были проведены при решении примера 4.1. В частности, была найдена первая производная , определены точки экстремума и значения функции в них: x = -4 – точка максимума, графику принадлежит точка (-4, f(-4)), т.е. (-4;-8); x = -4 – точка минимума, графику принадлежит точка (0, f0)), т.е. (0;0). Кроме того, из таблицы следовало, что f(x) возрастает на интервалах  и , а убывает на интервалах  и

6. Найдем теперь вторую производную:

Очевидно, что знак второй производной зависит только от знака знаменателя. При x>-2  и график направлен выпуклостью вниз, а при x>-2   и график направлен выпуклостью вверх.

7. Найдем теперь уравнение наклонной асимптоты. По первой из формул (4.1) получаем: 

(поступали так же, как при решении примера 1.1). Далее,

(аналогично). Таким образом, прямая  – наклонная асимптота.

Эскиз полученного графика приведен на рис.2.

Рис.2

На главную страницу: Решение курсовой