Курс лекции и примеры решения задач по электротехнике и электронике

Контрольная
Типовой

Курсовая

Практикум
Карта

Параллельное включение приемников энергии

Рис. 2.13

Рассмотрим цепь из двух параллельных ветвей (рис. 2.13 а). Допустим, что известны напряжение источника и параметры схемы. Нужно определить ток , потребляемый от источника, и угол сдвига  на входе цепи. Для получения расчетных соотношений построим векторную диаграмму токов. Предварительно рассчитаем токи в параллельных ветвях и углы их сдвига относительно приложенного напряжения. У первой ветви характер нагрузки индуктивный, ток отстает от  на угол

 ; .

У второй ветви характер нагрузки емкостный, вектор  опережает  на угол 

  ; .

В качестве основного вектора принимаем вектор напряжения источника , являющегося общим для двух параллельных ветвей (рис. 2.13 б). Тогда относительно него нетрудно сориентировать векторы токов  .

Регулирование скорости вращения Асинхронные двигатели обычно применяются для электроприводов, которые работают с постоянной частотой вращения. Но иногда они применяются для регулируемых электроприводов. Рассмотрим возможные способы регулирования частоты вращения.

При выборе направления тока второй ветви угол  откладываем от вектора  в направлении, параллельном вектору , поскольку начала этих векторов не совмещены. В соответствии с первым законом Кирхгофа () определяем входной ток. В дальнейшем все расчетные соотношения получим из векторной диаграммы. Для этого представим каждый вектор проекциями на взаимноперпендикулярные оси. Проекцию вектора тока на вектор напряжения назовем активной составляющей тока , а перпендикулярную проекцию – реактивной составляющей . На диаграмме (рис. 2.13 б) эти составляющие показаны для всех векторов. Составляющие токи   и  физически не существуют и должны рассматриваться только как расчетные. По диаграмме активная составляющая входного тока определяется как сумма активных составляющих токов в параллельных ветвях

  (2.28)

где  – активная проводимость цепи, равная арифметической сумме активных проводимостей отдельных ветвей

где  – активная проводимость -й ветви.

Только в частном случае, когда ветвь представляет собой чисто активное сопротивление .

Реактивная составляющая входного тока определяется как алгебраическая сумма реактивных составляющих токов в параллельных ветвях. Реактивную составляющую ветви с катушкой считают положительной, а с конденсатором – отрицательной. Знаки учитывают при подстановке соответствующих значений

  (2.29)

где  – реактивная составляющая проводимости цепи, равная алгебраической сумме реактивных проводимостей отдельных ветвей.

В общем случае

где  – реактивная проводимость отдельной -й ветви,

.  (2.30)

Если рассматриваемая ветвь чисто реактивная: , проводимость  является обратной реактивному сопротивлению. Ток на входе цепи (см. векторную диаграмму на рис. 2.13 б) с учетом (2.28, 2.29)

  (2.31)

где  – полная проводимость цепи, равная геометрической сумме активной и реактивной проводимостей.

Угол сдвига фаз  также определяется из векторной диаграммы. На рис. 2.14 а изображена векторная диаграмма входного тока , его составляющих  и  и напряжения источника . Треугольник, образованный вектором тока и его проекциями ,  и , называется треугольником токов (рис. 2.14 а). Если стороны этого треугольника разделить на напряжение , получится треугольник, подобный треугольнику токов – треугольник проводимостей. Он образован проводимостями , модули которых равны соответствующим проводимостям, а стороны совпадают с векторами , ,  треугольника токов (рис. 2.14 б).

  а) б) в)

Рис. 2.14

На рис. 2.14 в показан треугольник проводимостей при <0. Из него находим соотношения между параметрами и формулы для определения угла сдвига фаз

. (2.32)

Чтобы учесть знак , следует использовать формулы тангенса и синуса.

В этой цепи, когда общий ток совпадает по фазе с напряжением, а входная реактивная проводимость  или , может возникнуть явление резонанса. При  противоположные по фазе реактивные составляющие токов равны, поэтому резонанс в такой цепи получил название резонанса токов.

Пример 2.1. Определить действующее значение входного тока по известным токам в параллельных ветвях (риc. 2.15 а) = 3 A; = 1 A; = 5 A.

Решение находим по первому закону Кирхгофа

,

в соответствии с которым строим векторную диаграмму.

Рис. 2.15

Направления трех слагаемых тока  выбраны по отношению к вектору . Из диаграммы (рис. 2.16 б) определяем ток

 А.

На главную страницу: Лабораторные по электротехнике