Курс лекции и примеры решения задач по электротехнике и электронике

Проектирование электронных
устройств

Математический расчет дальности
Wi-fi сигнала
Базовые устройства электроники

Конспект лекций по физике

Механика
Термодинамика
Электротехника
Оптика
Квантовая механика
Эффективная организация
обмена информации
Ядерная физика

Курсовой расчет по сопромату

Расчет на жесткость
Испытание материалов на выносливость
Расчет на жесткость стержня
постоянного сечения
Вычисление моментов инерции

Начертательная геометрия

Параллельное проецирование
Решение практических задач
Позиционные задачи
Метрические задачи
Аксонометрические проекции

Профилактическое
обслуживание ПК

Блок питания
Сетевые фильтры-стабилизаторы
Программы для резервного копирования
Заключение контракта на обслуживание
Программы расширенной диагностики
Диагностика Norton Utilities

Программа Drive Probe

Энергетика

Техногенные катастрофы
История развития ядерной индустрии
Оборудование электростанций
Электротехника

Математика

Контрольная
Практикум по решению
математических задач
Типовой расчет

История искусства

Художественный авангард
Эпоха становления русской живописи
Чудотворные иконы
Царские и шамилевские крепости
в Дагестане
Бахчисарай и дворцы Крыма
Образы Италии XXI века

ЛИНЕЙНЫЕ ЦЕПИ ПОСТОЯННОГО ТОКА Постоянный ток широко используется во многих отраслях техники. Его применяют в устройствах связи, приборах, электрооборудовании мобильных агрегатов и др.

Электрический ток. Плотность тока. Электрическое напряжение Направленное движение свободных заряженных частиц в проводнике под действием электрического поля называется электрическим током. Электрический ток является скалярной величиной, которая равна пределу отношению заряда к промежутку времени, когда последний стремится к нулю

Источник ЭДС и источник тока При преобразовании любого вида энергии в электрическую энергию в источниках происходит за счет электродвижущей силы (ЭДС). Электродвижущая сила  характеризует действие сторонних (неэлектрических) сил в источниках постоянного или переменного тока

Электрическая энергия и электрическая мощность

Закон Ома для участка цепи, содержащего ЭДС

Преобразование линейных электрических схем Расчет и исследование сложных электрических схем во многих случаях можно значительно облегчить за счет преобразования. Суть преобразования заключается в замене участков цепи эквивалентными, но более простыми, т.е. не вызывающими изменения напряжения и токов в остальной части цепи.

Метод преобразований треугольника резисторов в эквивалентную звезду и наоборот Рассмотрим две электрические цепи. Одна из них имеет вид треугольника, другая – трехлучевой звезды. В дальнейшем такие соединения будем называть соответственно соединением в треугольник и соединением звездой.

Расчет разветвленной электрической цепи с помощью законов Кирхгофа Метод заключается в составлении уравнений по первому и второму законам Кирхгофа для узлов и контуров электрической цепи и решении этих уравнений с целью определения неизвестных токов в ветвях и по ним – напряжений. Поэтому число неизвестных равно числу ветвей , следовательно, столько же независимых уравнений необходимо составить по первому и второму законам Кирхгофа.

Метод двух узлов Под методом двух узлов понимают метод расчета электрических цепей, в котором за искомое принимают узловое напряжение.

Принцип наложения Принцип наложения представляет собой частный случай известного из физики принципа независимости действия сил. Сущность принципа наложения заключается в том, что в любой ветви линейной цепи с постоянными сопротивлениями равен ток алгебраической сумме частичных токов, создаваемых в этой ветви каждой из ЭДС в отдельности

ЛИНЕЙНЫЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА В электроэнергетике используют в основном переменный ток. В настоящее время почти вся электрическая энергия вырабатывается в виде энергии переменного тока. Основное преимущество переменного тока по сравнению с постоянным током заключается в возможности просто и с минимальными потерями преобразовывать напряжение при передаче энергии. Генераторы и двигатели переменного тока имеют более простое устройство, надежней в работе и проще в эксплуатации по сравнению с машинами постоянного тока.

Резистор, индуктивная катушка и конденсатор в цепи синусоидального тока Составными элементами цепей синусоидального тока являются резистор, индуктивная катушка и конденсатор. Для упрощения исследования процессов в реальной электрической цепи переменного тока эту цепь, как и цепь постоянного тока, представляют схемой замещения, составленной из этих элементов.

Анализ цепей синусоидального тока с помощью векторных диаграмм Совокупность векторов, изображающих синусоидальные ЭДС, напряжения и токи одной частоты и построенных на плоскости с соблюдением их ориентации друг относительно друга, называют векторной диаграммой. Векторные диаграммы широко применяются при анализе режимов работы цепей синусоидального тока, что делает расчет цепи наглядным.

Параллельное включение приемников энергии

Мощности цепи синусоидального тока

Комплексный метод расчета цепей синусоидального тока Широкое распространение на практике получил метод расчета цепей синусоидального тока, который принято называть комплексным. Сущность метода состоит в том, что синусоидальные токи, напряжения и ЭДС изображаются комплексными числами, а геометрические операции над векторами заменяются алгебраическими операциями над комплексными числами. Этот метод позволяет рассчитывать цепи синусоидального тока алгебраически аналогично цепям постоянного тока.

Мощности в комплексной форме

Электрические цепи с взаимной индуктивностью

ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Классический метод расчета переходных процессов заключается в решении дифференциальных уравнений цепи для мгновенных значений, составленных по первому и второму законам Кирхгофа. Решение состоит в определении: корней характеристического уравнения, свободных составляющих переходного процесса, постоянных интегрирования и, наконец, переходных токов и напряжений. Особенность классического метода в том, что при решении имеют дело с реальными параметрами и с реальным временем. Результаты расчета обычно иллюстрируют графиками.

Включение резистора и катушки на постоянное напряжение

ЦЕПИ НЕСИНУСОИДАЛЬНОГО ТОКА Причин отличия кривых токов и напряжений от синусоидальной формы несколько. Во-первых, в генераторах переменного тока кривая распределения магнитной индукции вдоль воздушного зазора из-за конструктивного несовершенства машин может отличаться от синусоиды. Это приводит к возникновению в обмотках несинусоидальной ЭДС.

Мощности цепи несинусоидального тока

В теории линейных цепей предполагается, что параметры всех сосредоточенных элементов: сопротивление резистора , индуктивность катушки , емкость конденсатора  – являются неизменными, не зависящими от токов и напряжений. Это предположение является идеализацией. В действительности параметры элементов в какой-то степени зависят от тока и напряжения. Поэтому параметры , и допустимо считать неизменными лишь в ограниченных пределах изменения токов и напряжений. Однако существует множество элементов и устройств, параметры которых существенно зависят от токов и напряжений. Такие элементы называются нелинейными, а цепь, содержащая хотя бы один нелинейный элемент, называется нелинейной.

Нелинейные цепи переменного тока с ферромагнитными элементами

Электронные усилители

Генераторы синусоидальных колебаний

Электронные ключи Для выполнения различных коммутаций в устройствах автоматики и вычислительной техники, включения и выключения элементов, источников питания используют электронные ключи.

Логический элемент – это электронная схема, которая имеет один или больше входов X, реализующая на каждом выходе соответствующую логическую функцию Y от входных переменных. Логические элементы являются важнейшей составной частью устройств цифровой (дискретной) обработки информации – цифровых измерительных приборов, устройств автоматики и ЭВМ. Логические элементы, как правило, выполняют на базе электронных устройств, работающих в ключевом режиме. В связи с этим цифровая информация представляется в виде логической переменной, принимающей всего два различных значения: логическая 1 – истинно и логический 0 – ложно.

ИСТОЧНИКИ ПИТАНИЯ ЭЛЕКТРОННЫХ УСТРОЙСТВ Практически все источники питания выполняют три основные функции: преобразование электрической энергии, стабилизацию и регулирование.

Для уменьшения пульсаций (сглаживания) выпрямленного напряжения используют специальные устройства – сглаживающие фильтры.

Словарь терминов

Практикум по решению задач (практических ситуаций) по темам лекций (одна из составляющих частей итоговой государственной аттестации).

Несимметричный трехфазный приемник включен в четырехпроводную цепь с фазным напряжением генератора 127 В (см. рис. 6.10, а). При номинальном режиме фазные токи приемника соответственно равны: Ia = Ib = Iс = 5 А. Определить фазные токи и напряжения приемника при обрыве нейтрального провода. Построить векторную диаграмму.

ЭЛЕКТРИЧЕСКИЕ ТРЕХФАЗНЫЕ ЦЕПИ Трехфазная система электрических цепей представляет собой совокупность электрических цепей, в которых действуют три синусоидальные э. д. с. одной и той же частоты, сдвинутые друг относительно друга по фазе и создаваемые общим источником энергии.

СОЕДИНЕНИЕ ОБМОТОК ГЕНЕРАТОРА И ФАЗ ПРИЕМНИКА ЗВЕЗДОЙ Каждая фаза трехфазного генератора может являться источником питания для однофазного приемника. В этом случае схема электрической цепи имеет вид, изображенный на рис. , т. е. каждая фаза работает отдельно от других, хотя в целом цепь является трехфазной. Это трехфазная несвязанная система.

СОЕДИНЕНИЕ ОБМОТОК ГЕНЕРАТОРА И ФАЗ ПРИЕМНИКА ТРЕУГОЛЬНИКОМ Соединение обмоток генератора или фаз приемника, при котором начало одной фазы соединяется с концом другой, образуя замкнутый контур, называется соединением треугольником .

НАПРЯЖЕНИЕ МЕЖДУ НЕЙТРАЛЬНЫМИ ТОЧКАМИ ГЕНЕРАТОРА И ПРИЕМНИКА

ФОТОРЕЗИСТИВНЫЙ ЭФФЕКТ

Полупроводниковые приборы, работа которых основана на использовании внутреннего фотоэффекта, называются фоторезисторами

Фотоэлектрический полупроводниковый прибор с одним p–n-переходом называется фотодиодом.

БИПОЛЯРНЫЙ ФОТОТРАНЗИСТОР

Существуют несколько типов стабилизаторов постоянного напряжения: параметрические, компенсационные последовательные и параллельные, на ОУ и интегральных микросхемах. В рамках ТЗ будут рассматриваться только первые три типа. Каждый из них имеет свои преимущества и недостатки. Так, например, параметрический стабилизатор характеризуется простотой исполнения и высоким КПД, но имеет низкий коэффициент стабилизации. При включении двух и более параметрических стабилизаторов последовательно их коэффициенты стабилизации и КПД перемножаются. Также в параметрических стабилизаторах невозможно плавное регулирование выходного напряжения.

Расчет схемы сравнения и усилителя

Расчет токостабилизирующего двухполюсника

Расчет выпрямителя

Смотрите rosstk.ru псб с 35 50.