Энергосбережение Нетрадиционная виды получения электрической энергии

Контрольная
Типовой

Курсовая

Практикум
Карта

Энергосбережение – это организационная, научная, практическая, информационная деятельность, направленная на рациональное и экономическое использование первичной и преобразованной энергии и природных энергетических ресурсов на народное хозяйство с использованием технико-экономических и правовых методов.

Нетрадиционная виды получения электрической энергии Совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии района. Совокупность способов получения экологически чистой энергии из неисчерпаемых источников.

Ветродвигатели с вертикальной осью вращения ветрового колеса

Примеры использования ветрогенераторов в городской архитектуре

Альтернативная гидроэнергетика Приливные электростанции Особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.

Гелиоэнергетика Источником энергии солнечного излучения служит термоядерная реакция на Солнце. При прохождении через атмосферу солнечный свет ослабляется, в основном из-за поглощения инфракрасного излучения – озоном и рассеяния излучения молекулами газов и находящимся в воздухе частицами пыли и аэрозолями. Солнечную энергию получают в большинстве случаев с помощью фотоэлементов.

Концентрические гелиоприемники Сферические зеркала выполненные из полированного металла, в фокус которых помещается теплоприемник, через который циркулирует теплоноситель. Для повышения КПД гелиоприемник снабжают системой слежения, за направлением движения Солнца, блок преобразователем, электродвигателем для поворота гелиоконструкции.

Геотермальная энергетика Производство электроэнергии, а также тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли. В вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин.

Космическая энергетика Получение электроэнергии в фотоэлектрических и других видов элементах, расположенных на орбите Земли. Природное электричество поступает к планете исходно от Солнца через геомагнитные полярные зоны схождения

Биотопливная энергетика Топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои.

Водородная энергетика Отрасль энергетики, основанная на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями.

Производство электрической энергии для различных типов, видов транспортных средств

Биотоплива третьего поколения. Департамент Энергетики США с 1978 года по 1996 года исследовал водоросли с высоким содержанием масла по программе «Aquatic Species Program». Исследователи пришли к выводу, что Калифорния, Гавайи и Нью-Мексико пригодны для промышленного производства водорослей в открытых прудах.

Атомная физика. Экспериментальные факты, лежащие в основе квантовой теории. Волновые и корпускулярные свойства материи.

 

Принцип построения атомной энергетики. Элементы ядерной физики. Как известно, все в мире состоит из молекул, которые представляют собой сложные комплексы взаимодействующих атомов. Молекулы - это наименьшие частицы вещества, сохраняющие его свойства. В состав молекул входят атомы различных химических элементов.

Реакторы с водой под давлением. Реакторы с водой под давлением занимают видное место в мировом парке энергетических реакторов. Кроме того, они широко используются на флоте в качестве источников энергии, как для надводных судов, так и для подводных лодок. Такие реакторы относительно компактны, просты и надежны в эксплуатации. Вода, служащая в таких реакторах теплоносителем и замедлителем нейтронов, относительно дешева, неагрессивна и обладает хорошими нейтронно-физическими свойствами.

Атомные подводные лодки и надводные корабли С 1955 по 1996 гг. в бывшем СССР построено около 250 атомных подводных лодок и 5 надводных кораблей. Помимо этого был сконструирован ядерный реактор (класса "Нюрка"), который предполагалось устанавливать на дизельные подводные лодки. К Северному флоту приписано 2/3 всех атомных подводных лодок России, 1/3 приходится на Тихоокеанский флот. На Черноморском и Балтийском флотах атомные подводные лодки не базируются.

Атомные суда в мирных целях Самая Важная сфера применения ядерных энергетических установок – это морской флот и прежде всего ледокольный флот.

В начале ноября 1984 г. в Керчи на судостроительном заводе "Залив" им. Б. Е. Бутомы состоялась торжественная закладка первого отечественного ледокольно-транспортного судна с атомной энергетической установкой - лихтеровоза-контейнеровоза "Севморпуть".

Ядерные энергетические установки АПЛ также делятся на четыре поколения. В основном на АПЛ установлены модификации атомных установок с реакторами типа ВВЭР.