Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Расчет на жесткость Испытание материалов на выносливость Определение напряжений в стенке тонкостенного сосуда Проверка теории изгибающего удара Расчет на жесткость стержня постоянного сечения Вычисление моментов инерции

Курсовой расчет по сопромату. Примеры решения задач

Определение напряжений в стенке тонкостенного сосуда

Ц е л ь р а б о т ы: определение напряжений в стенке тонкостенного осесимметричного сосуда, находящегося под действием внутреннего давления, и сравнивание с напряжениями, полученными расчетным путем.

Т е о р е т и ч е с к а я ч а с т ь р а б о т ы. Тонкостенным осесимметричным сосудом называют оболочку, срединная поверхность которой представляет собой поверхность вращения, а соотношение толщины её стенки  и наименьшего главного радиуса кривизны срединной поверхности  составляет .

Срединная поверхность - геометрическое место точек, равноотстоящих от обеих поверхностей оболочки.

В стенке тонкостенного осесимметричного сосуда толщиной , находящегося под внутренним давлением, напряжения определяют по известной формуле Лапласа (рис. 3.12):

 . (3.26)


Рис. 3.12. Тонкостенный осесимметричный сосуд

В настоящей работе используют тонкостенный цилиндрический сосуд (рис. 3.13,а).

В этом случае принимают , а  (радиус кривизны образующей цилиндра). Из уравнения Лапласа (3.23) получают для окружного напряжения

.

Откуда

  . (3.27)

Меридиональное напряжение определяют из условия равновесия отсеченной части сосуда (рис. 3.13,б) по формуле

  . (3.28)

 

 а) б)

Рис. 3.13. Тонкостенный цилиндрический сосуд

Сравнивая  и   в цилиндрическом сосуде, видим что

 . (3.29)


О п и с а н и е л а б о р а т о р н о й у с т а н о в к и. Схема установки показана на рис. 3.14 и представляет собой тонкостенный цилиндрический сосуд 1, в который из источника давления 2 подается газ.

Рис. 3.14. Схема лабораторной установки

Контроль за величиной давления осуществляется по манометру 3. На поверхности сосуда в средней его части наклеены тензодатчики в окружном 4 и меридиональном 5 направлениях, которые подключены к тензоусилителю 6. Через коммутатор 7 сигнал с тензодатчиков после усиления подается на измерительный прибор 8 (методику тензоизмерений см. в работе 3.1).

М е т о д и к а п р о в е д е н и я о п ы т а и о б р а б о т к а

р е з у л ь т а т о в. 1. Задают исходные данные: окружной радиус кривизны   меридиональный радиус кривизны   толщину стенки осесимметричной оболочки ; ступень внутреннего давления .

2. Балансируют мостовые схемы тензоусилителя, предварительно включенного в сеть для прогрева в течение не менее 20 минут.

3. Подают внутреннее давление Р, снимают показания и  на измерительном приборе 8 тензоусилителя каждого тензодатчика и записывают в журнал наблюдений. Опыт повторяют 2 – 3 раза, увеличивая давление равными ступенями  и записывая для каждого опыта результаты испытаний в журнал наблюдений. По результатам измерений вычисляют приращения показаний тензодатчиков  и  на заданную ступень давления , а затем определяют среднее значение этих приращений   и .

4.Вычисляют опытные значения окружного  и меридионального напряжения  при заданной ступени давления по формулам:

   (3.30)

где   и  - тарировочные коэффициенты тензодатчиков.

5. Вычисляют теоретические значения напряжений  и  при той же ступени давления  по формулам (3.27) и (3.28) и проводят сопоставление полученных результатов. При этом обрабатывают результаты опытов согласно требованиям раздела 4.

Содержание отчета

Название лабораторной работы.

Цель работы.

Схема лабораторной установки.

Исходные данные.

Окружной радиус кривизны .

Меридиональный радиус кривизны .

Толщина стенки сосуда .

 Теоретические расчеты.

Окружное напряжение .

Меридиональное напряжение .

Результаты опыта.

п/п

Давление

Ступень внутреннего давления

Показания тензодатчиков

Приращения показаний тензодатчиков

Средние значения приращений

Обработка результатов опыта.

Значение окружного напряжения .

Значение меридионального напряжения .

8. Сравнение опытных и теоретических значений.

Вопросы для самоконтроля

Какова цель лабораторной работы?

Как устроена лабораторная установка?

Какие тензодатчики применяют в работе? Опишите их устройство.

Что называют тонкостенной осесимметричной оболочкой?

Что называют срединной поверхностью оболочки (сосуда)?

Как записывают уравнение Лапласа?

Какое соотношение существует между меридиональным и окружным напряжениями в цилиндрической тонкостенной оболочке?

Что означают символы: ?

Как теоретически вычислить меридиональные и окружные напряжения в стенке цилиндрического сосуда?

Какова методика опытного определения этих напряжений?

Испытание различных материалов на ударную вязкость Изучение методики определения ударной вязкости пластических масс и других неметаллических материалов при испытании стандартных образцов на маятниковом копре.

Определение нормальных напряжений в балке при прямом изгибе Ознакомление с методом электротензометрирования. Опытное изучение закона распределения нормальных напряжений по высоте сечения балки и сравнение с напряжениями, вычисленными теоретически. Прямым изгибом называют такой изгиб, при котором силовая плоскость совпадает с одной из главных плоскостей балки.

Определение главных напряжений при совместном изгибе и кручении тонкостенной трубы Определение опытным путем величины и направления главных напряжений в поверхностном слое тонкостенной трубы при кручении, а также при одновременном изгибе и кручении, и сравнение их с данными, полученными теоретическим расчетом.

Определение напряжений при внецентренном растяжении бруса Определить опытным путем нормальные напряжения в крайних волокнах поперечного сечения бруса при внецентренном растяжении и сравнить их с напряжениями, вычисленными теоретически.


На главную страницу: Выполнить курсовую