Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Криволинейные интегралы первого рода Физические приложения двойных интегралов Физические приложения тройных интегралов Тройные интегралы в декартовых координатах Знакопеременные ряды. Вычислить сумму ряда Контрольная по математике


Математика. Решение задач контрольных, курсовых заданий. Примеры

Вычислить сумму ряда

. Указание: применить формулу Парсеваля к функции f (x) = x.

 


Решение.
Разложение в ряд Фурье функции f (x) = x в интервале [−π, π] имеет вид
     


Здесь коэффициенты Фурье имеют следующие значения: (поскольку функция f (x) = x нечетная) и . Используя формулу Парсеваля. получаем
     
Отметим, что называется дзета-функцией Римана ζ (s). Таким образом, мы доказали, что .
Применить формулу Парсеваля к функции .

Решение.
В примере 4 на странице Определение ряда Фурье и типичные примеры было найдено разложение функции в ряд Фурье в интервале [−π, π]:
     
где
     
Записывая равенство Парсеваля для этой функции, получаем
     
Ряд известен как дзета-функция Римана ζ (s). Следовательно,
     

Применяя формулу Парсеваля к функции

     
найти суммы рядов .

Решение.
Разложение данной функции в ряд Фурье имеет вид (попробуйте найти это самостоятельно):
     
Коэффициенты Фурье в этом разложении равны
     
Применяя к данной функции равенство Парсеваля
     
получаем
     
Несложно также найти и сумму ряда :
     
Здесь (смотрите пример 1 выше). Следовательно,

     

Вычислить сумму ряда .


Решение.
В предыдущей задаче было найдено, что
     
Полагая , получаем
     
Можно заметить, что
     
Следовательно,
     
Тогда сумма ряда равна
     

Сходимость рядов. Признаки сравнения

Необходимый признак сходимости, вообще говоря, не гарантирует сходимости ряда. Сходимость или расходимость ряда устанавливается с помощью достаточных признаков. Признаки сравнения, которые мы рассмотрим ниже, как раз и представляют собой достаточные признаки сходимости или расходимости рядов.

Признаки сравнения рядов
Даны два ряда и − такие, что для всех n. Тогда справедливы следующие признаки:
  • Если сходится, то также сходится;
  • Если расходится, то также расходится.
  • Предельные признаки сравнения рядов
    Пусть даны два ряда и , у которых члены an и bn положительны для всех n. Тогда справедливы следующие предельные признаки:
    Так называемый обобщенный гармонический ряд сходится при p > 1 и расходится при

    0 < p ≤ 1

    Предположим, что f (x) является периодической функцией с периодом 2π. Пусть для . Найти разложение Фурье для заданной параболической функции.

    Пример Найти периодические решения дифференциального уравнения , где k − константа, а f (x) − периодическая функция.

    Определить, сходится или расходится ряд .

    Найти разложение в ряд Фурье в комплексной форме для функции , заданной в интервале


    На главную страницу: Вычисление интеграла