Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Контрольная по математике Практикум Типовой расчет Электротехника

Практикум по решению математических задач. Пределы Примеры решения заданий

Исследовать функцию

и построить ее график.

Находим область существования функции. Очевидно, что областью определения функции является область (–¥;–1) È (–1; 1) È (1; ¥).

В свою очередь, видно, что прямые х = 1, х = –1 являются вертикальными асимптотами кривой.

Областью значений данной функции является интервал (–¥; ¥).

Точками разрыва функции являются точки х = 1, х = –1.

Находим критические точки.

Найдем производную функции

Критические точки: x = 0; x = –; x = ; x = –1; x = 1.

Найдем вторую производную функции

.

Определим выпуклость и вогнутость кривой на промежутках.

-¥ < x < –, y¢¢ < 0, кривая выпуклая;

< x < –1, y¢¢ < 0, кривая выпуклая;

–1 < x < 0, y¢¢ > 0, кривая вогнутая;

 0 < x < 1, y¢¢ < 0, кривая выпуклая;

 1 < x < , y¢¢ > 0, кривая вогнутая;

   < x < ¥, y¢¢ > 0, кривая вогнутая;

Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.

¥ < x < –, y¢ > 0, функция возрастает

< x < -1, y¢ < 0, функция убывает

–1 < x < 0, y¢ < 0, функция убывает

  0 < x < 1, y¢ < 0, функция убывает

 1 < x < , y¢ < 0, функция убывает

  < x < ¥, y¢¢ > 0, функция возрастает

Видно, что точка х = – является точкой максимума, а точка х =  является точкой минимума. Значения функции в этих точках равны соответственно –3/2 и 3/2.

Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты.

Итого, уравнение наклонной асимптоты – y = x.

Построим график функции:

Интеграл вида , если

функция R является нечетной относительно cosx.

Несмотря на возможность вычисления такого интеграла с помощью универсальной тригонометрической подстановки, рациональнее применить подстановку t = sinx.

Функция  может содержать cosx только в четных степенях, а следовательно, может быть преобразована в рациональную функцию относительно sinx.

23.

Вообще говоря, для применения этого метода необходима только нечетность функции относительно косинуса, а степень синуса, входящего в функцию может быть любой, как целой, так и дробной.

Интеграл вида ,

если функция R является нечетной относительно sinx.

По аналогии с рассмотренным выше случаем делается подстановка t = cosx.

Тогда

24.

Интеграл вида , если

функция R четная относительно sinx и cosx.

Для преобразования функции R в рациональную используется подстановка t = tgx.

Тогда

25.


На главную страницу: Типовые расчеты по математике