Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Контрольная по математике Практикум Типовой расчет Электротехника

Практикум по решению математических задач. Пределы Примеры решения заданий

Дифференцируемые функции

Практикум по решению задач

1. Найти производную функции.

Сначала преобразуем данную функцию:

2. Найти производную функции .

3. Найти производную функции

4. Найти производную функции

5. Найти производную функции

6. Найти предел .

Как видно, при попытке непосредственного вычисления предела получается неопределенность вида . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.

f¢(x) = 2x + ; g¢(x) = ex; ;

7. Найти предел .

; ; .

Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.

8. Найти предел .

; ;

; ;

 

Следует отметить, что правило Лопиталя – всего лишь один из способов вычиления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой – либо другой метод (замена переменных, домножение и др.).

Найти предел .

 — опять получилась неопределенность. Применим правило Лопиталя еще раз.

;  — применяем правило Лопиталя еще раз.

;

Неопределенности вида  можно раскрыть с помощью логарифмирования. Такие неопределенности встречаются при нахождении пределов функций вида , f(x)>0 вблизи точки а при х®а. Для нахождения предела такой функции достаточно найти предел функции lny = g(x)lnf(x).

10. Найти предел .

Здесь y = xx, lny = xlnx.

Тогда . Следовательно 

11. Найти предел .

— получили неопределенность. Применяем правило еще раз. ;


На главную страницу: Типовые расчеты по математике