Контрольная по математике Практикум Типовой расчет Электротехника

Практикум по решению математических задач. Задачи контрольной работы

Задача 5 (УрГУ).

К кривой  в точках с абсциссами  и проведены касательные. При каком значении b периметр треугольника, образованного проведенными касательными и осью Oy, будет наименьшим?

Решение.

Уравнения касательных к заданной параболе в точках с абсциссами  и  соответственно имеют вид y1=(b-2)x+1, у2=(b-2)х -7.

Отсюда две вершины треугольника, о котором говорится в условии, имеют координаты M(0;1) и N(0;-7), а третья — К(-2; 5-2b) (рис. 5). Следовательно, нужно найти такое положение точки К на прямой х = - 2, при котором сумма MK + KN была бы наименьшей.

Покажем, что искомая точка — это точка пересечения прямых х=-2 и РМ, где точка Р симметрична точке N относительно прямой х = - 2. Пусть К' произвольная точка прямой х = — 2, отличная от К. Имеем

МК' + K'N=MK'+PK'>MP = РК + КМ = KN + КМ.

Поскольку средняя линия треугольника PMN лежит на прямой х = — 2, треугольник MKN равнобедренный; тогда ордината точки К равна —3. Отсюда 5—2b = —3, b = 4. 

Ответ: b = 4.


 

 

Задача 6 (МФТИ).

В основании прямой призмы лежит ромб ABCD с углом . Длины всех ребер призмы равны 1. Точка F — середина ребра DC, а точка М лежит на прямой AF. Определите наименьшее значение суммы площадей треугольников МВВ1 и МСС1

Решение.

Пусть МК и ML — высоты соответственно треугольников МВВ1 и МСС1 (рис. 6), М1 — проекция точки М на плоскость ABC. Тогда М1В=МК, M1C=ML и 

Как и в предыдущей задаче, сумма M1B + M1C принимает наименьшее значение, если M1 — точка пересечения прямых AF и BE, где Е — точка,  симметричная точке С относительно прямой AF (рис. 7).

Осталось найти длину отрезка BE. По теореме косинусов

,

где . Проведем в треугольнике ADF высоту DN. Видно, что СЕ=2DN и FCE=NDF. Но

Из  по Т. косинусов 

Ответ: 


 


На главную страницу: Типовые расчеты по математике