Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Контрольная по математике Практикум Типовой расчет Электротехника

Практикум по решению математических задач. Примеры решений

Задача 23. Найти область сходимости функционального ряда

Решение. Это частный случай функционального ряда – степенной ряд вида

Радиус сходимости R такого ряда можно найти по одной из формул:

  или .

Интервал абсолютной сходимости степенного ряда определяется неравенством . Вне этого интервала, при  ряд расходится. На концах интервала – в точках  поведение ряда исследуется особо.

Находим радиус сходимости для заданного ряда по первой формуле. Так как , получаем

Тогда ряд сходится, если , откуда , то есть .

Исследуем сходимость ряда в точках  и .

При   исходный ряд принимает вид

Это обобщенный гармонический сходящийся ряд ( сходится, если ).

При   получаем знакочередующийся ряд   Этот ряд сходится (притом абсолютно), так как сходится ряд из абсолютных величин его членов:

Итак, исходный ряд сходится для всех .

Задача 24. Найти коэффициенты  и  разложения в ряд Фурье функции 

Записать это разложение.

Решение. Воспользуемся формулами (36), (37) разложения в ряд Фурье функции , заданной на отрезке :

,

где

Найдем коэффициенты  и . Так как , получим

Так как  можно заменить более простой функцией , получим .

Подставляем найденные коэффициенты в ряд Фурье:

Задача 25. Найти коэффициенты  разложения в ряд Фурье по синусам функции

.

Решение. Коэффициенты  разложения функции в ряд Фурье по синусам определяются по формуле (41):

Тогда

Так как , получим


На главную страницу: Типовые расчеты по математике