Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Контрольная по математике Практикум Типовой расчет Электротехника

Практикум по решению математических задач. Пределы Примеры решения заданий

Найти полное приращение и дифференциал функции

 в точке .

Ñ По формуле (5.1)  =.

 Дифференциал df есть главная часть полного приращения, линейная относительно .#

6. Найти дифференциал функции .

Первый способ. По формуле (5.4):  ,

.

Второй способ. Применяем правила дифференцирования (5.5):

+

. #

7. Найти дифференциалы 1-го, 2-го и 3-го порядков для функции .

Ñ По формуле (5.4): . По формуле (5.6) при m = 2 и m = 3, считая dx и dy постоянными, последовательно находим (смешанные частные производные не зависят от порядка дифференцирования):

=

#

8. Найти , если , где .

Ñ По формуле (6.1) имеем   . #

9. Найти производную функции .

Ñ Первый способ – применить логарифмическое дифференцирование, как делалось для функции одной переменной.

Второй способ. Функция u(t) есть результат образования сложной функции при подстановке в функцию  вместо x и y двух одинаковых функций переменой t:  . Тогда по формуле (6.1):  + получаем = + .#

10. Найти  и , если , где y = sin2x.

Ñ Имеем . По формуле (6.2) получим = .#

11. Найти , если , где , .

Ñ - сложная функция от независимых переменных x и y. Тогда по формулам (6.3) получим: ;

,

,

.#

12. Найти , если .

Ñ  и по формуле (6.4) получаем  =. В нашем случае x0 = 0. Непосредственной подстановкой убедимся, что точка  принадлежит графику функции, т.е. . Поэтому .#

13. Найти , если .

ÑЛевую часть данного уравнения обозначим . По формуле (6.5) получим:, .#

14. Вычислить приближенно .

Ñ Искомое число будем рассматривать как значение функции  при  и , если . Точка  выбрана из соображений близости ее к точке  и простоты вычисления значений функции f и ее частных производных в точке М. По формуле (7.1) имеем .

Находим  . Следовательно,  » . #


На главную страницу: Типовые расчеты по математике